Design and Fabrication of a Four-Dimensional Respiratory Phantom for Studying Tumor Movement in Radiotherapy with Magnetic Resonance Imaging
نویسندگان
چکیده مقاله:
Introduction: In radiation therapy, determining the location of the tumor accurately during irradiation is one of the most important requirements. However, lung tumors are not fixed in a single location and move during irradiation due to respiratory motion. Due to limitations in assessing such movements, using a lung phantom can be useful and operational for their fast, easy and inexpensive assessment. Moreover, Magnetic Resonance Imaging (MRI)- guided radiation therapy is an emerging modality and research is needed increasingly in this field. An advanced aspect of MRI-guidance is its use in respiratory-correlated radiation therapy. To facilitate research on this topic, the aim of this study was to design and build a four-dimensional (4D) respiratory phantom for studying tumor movements in lung radiation therapy. Materials and Methods: By molding a normal human lung, an artificial lung made of silicon was constructed. The chest was made of plexiglas and a double-walled container. The wall was filled with water to increase the MR signal strength. A 1.5-liter thin bag of silicon was made as a synthetic diaphragm and was placed into the chest. Seven tumors were embedded in different parts of the lung. A piston pump was used to simulate the breathing and an engine and gearbox were used to create the reciprocating motion. Results: The phantom is MRI compatible, unlike many of the previously designed 4D lung phantoms. Inspecting the MRI, CT and fluoroscopy x-ray scans taken of the phantom, useful information could be derived from the images which could be applied to simulating and examining the motion and the types of movement of lung tumors. Conclusion: The constructed lung phantom can be a useful tool for research into respiratory- correlated radiation therapy and its new techniques, as well as quality assurance of a variety of 4D imaging devices and protocols.
منابع مشابه
Fabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...
متن کاملFabrication of New 3D Phantom for Measuring Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion is a major shortcoming of magnetic resonance imaging (MRI), which has an important influence on the accuracy of volumetric measurements, an important parameter in neurology and oncology. Our goal is to design and construct a new three- dimensional phantom using a 3D printer in order to measure geometric distortion and its reproducibility in...
متن کاملApplication of computed tomography and magnetic resonance imaging fusion images for delineating gross tumor volume in three-dimensional conformal radiotherapy of nasopharyngeal carcinoma
Background: To evaluate computed tomography (CT) and magnetic resonance imaging (MRI) fusion images for delineating gross tumor volume (GTV) in three-dimensional conformal radiotherapy (3D-CRT) of nasophanrygeal carcinoma (NPC), and compare treatment outcomes between CT- and CT+MRI-based targets. Materials and Methods: A total of 120 NPC patients treated with 3D-CRT were included, in which, 60 ...
متن کاملStatic Coil Design Considerations for the Magnetic Resonance Imaging
One of the main challenges in developing magnetic resonance imaging (MRI) systems is to create a static coil that needs to generate magnetic field density along with the characteristics of optimal homogeneity and magnitude size. To do this, two N42 Block PMs are used and the iron core is designed and optimized in accordance with the dimensions of PM pieces using ANSYS Maxwell software. Then, al...
متن کاملGeometric distortion evaluation of magnetic resonance images by a new large field of view phantom for magnetic resonance based radiotherapy purposes
Background: The magnetic resonance imaging (MRI)-based radiotherapy planning method have been considered in recent years because of the advantages of MRI and the problems of planning with two images modality. The first step in MRI-based radiotherapy is to evaluate magnetic resonance (MR) images geometric distortion. Therefore, the present study aimed to evaluate system related geometric distort...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 15 شماره Special Issue-12th. Iranian Congress of Medical Physics
صفحات 252- 252
تاریخ انتشار 2018-12-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023